A Regression-Based Approach to Diabetic Retinopathy Diagnosis Using Efficientnet

Author:

Vijayan Midhula1,S Venkatakrishnan1

Affiliation:

1. Forus Health Private Limited, Bengaluru 560070, Karnataka, India

Abstract

The aim of this study is to develop a computer-assisted solution for the efficient and effective detection of diabetic retinopathy (DR), a complication of diabetes that can damage the retina and cause vision loss if not treated in a timely manner. Manually diagnosing DR through color fundus images requires a skilled clinician to spot lesions, but this can be challenging, especially in areas with a shortage of trained experts. As a result, there is a push to create computer-aided diagnosis systems for DR to help reduce the time it takes to diagnose the condition. The detection of diabetic retinopathy through automation is challenging, but convolutional neural networks (CNNs) play a vital role in achieving success. CNNs have been proven to be more effective in image classification than methods based on handcrafted features. This study proposes a CNN-based approach for the automated detection of DR using Efficientnet-B0 as the backbone network. The authors of this study take a unique approach by viewing the detection of diabetic retinopathy as a regression problem rather than a traditional multi-class classification problem. This is because the severity of DR is often rated on a continuous scale, such as the international clinical diabetic retinopathy (ICDR) scale. This continuous representation provides a more nuanced understanding of the condition, making regression a more suitable approach for DR detection compared to multi-class classification. This approach has several benefits. Firstly, it allows for more fine-grained predictions as the model can assign a value that falls between the traditional discrete labels. Secondly, it allows for better generalization. The model was tested on the APTOS and DDR datasets. The proposed model demonstrated improved efficiency and accuracy in detecting DR compared to traditional methods. This method has the potential to enhance the efficiency and accuracy of DR diagnosis, making it a valuable tool for healthcare professionals. The model has the potential to aid in the rapid and accurate diagnosis of DR, leading to the improved early detection, and management, of the disease.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3