AntiHalluciNet: A Potential Auditing Tool of the Behavior of Deep Learning Denoising Models in Low-Dose Computed Tomography

Author:

Ahn Chulkyun12ORCID,Kim Jong Hyo123456

Affiliation:

1. Department of Transdisciplinary Studies, Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea

2. ClariPi Research, ClariPi, Seoul 03088, Republic of Korea

3. Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea

4. Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea

5. Department of Radiology, Seoul National University Hospital, Seoul 03080, Republic of Korea

6. Center for Medical-IT Convergence Technology Research, Advanced Institutes of Convergence Technology, Suwon-si 16229, Republic of Korea

Abstract

Gaining the ability to audit the behavior of deep learning (DL) denoising models is of crucial importance to prevent potential hallucinations and adversarial clinical consequences. We present a preliminary version of AntiHalluciNet, which is designed to predict spurious structural components embedded in the residual noise from DL denoising models in low-dose CT and assess its feasibility for auditing the behavior of DL denoising models. We created a paired set of structure-embedded and pure noise images and trained AntiHalluciNet to predict spurious structures in the structure-embedded noise images. The performance of AntiHalluciNet was evaluated by using a newly devised residual structure index (RSI), which represents the prediction confidence based on the presence of structural components in the residual noise image. We also evaluated whether AntiHalluciNet could assess the image fidelity of a denoised image by using only a noise component instead of measuring the SSIM, which requires both reference and test images. Then, we explored the potential of AntiHalluciNet for auditing the behavior of DL denoising models. AntiHalluciNet was applied to three DL denoising models (two pre-trained models, RED-CNN and CTformer, and a commercial software, ClariCT.AI [version 1.2.3]), and whether AntiHalluciNet could discriminate between the noise purity performances of DL denoising models was assessed. AntiHalluciNet demonstrated an excellent performance in predicting the presence of structural components. The RSI values for the structural-embedded and pure noise images measured using the 50% low-dose dataset were 0.57 ± 31 and 0.02 ± 0.02, respectively, showing a substantial difference with a p-value < 0.0001. The AntiHalluciNet-derived RSI could differentiate between the quality of the degraded denoised images, with measurement values of 0.27, 0.41, 0.48, and 0.52 for the 25%, 50%, 75%, and 100% mixing rates of the degradation component, which showed a higher differentiation potential compared with the SSIM values of 0.9603, 0.9579, 0.9490, and 0.9333. The RSI measurements from the residual images of the three DL denoising models showed a distinct distribution, being 0.28 ± 0.06, 0.21 ± 0.06, and 0.15 ± 0.03 for RED-CNN, CTformer, and ClariCT.AI, respectively. AntiHalluciNet has the potential to predict the structural components embedded in the residual noise from DL denoising models in low-dose CT. With AntiHalluciNet, it is feasible to audit the performance and behavior of DL denoising models in clinical environments where only residual noise images are available.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3