Automated Opportunistic Osteoporosis Screening Using Low-Dose Chest CT among Individuals Undergoing Lung Cancer Screening in a Korean Population

Author:

Kang Woo Young1ORCID,Yang Zepa1,Park Heejun1,Lee Jemyoung23,Hong Suk-Joo1,Shim Euddeum4,Woo Ok Hee1ORCID

Affiliation:

1. Department of Radiology, Korea University Guro Hospital, Seoul 08308, Republic of Korea

2. Department of Applied Bioengineering, Seoul National University, Seoul 08826, Republic of Korea

3. ClariPi Research, ClariPi Inc., Seoul 03088, Republic of Korea

4. Department of Radiology, Korea University Ansan Hospital, Ansan 15355, Republic of Korea

Abstract

Opportunistic osteoporosis screening using deep learning (DL) analysis of low-dose chest CT (LDCT) scans is a potentially promising approach for the early diagnosis of this condition. We explored bone mineral density (BMD) profiles across all adult ages and prevalence of osteoporosis using LDCT with DL in a Korean population. This retrospective study included 1915 participants from two hospitals who underwent LDCT during general health checkups between 2018 and 2021. Trabecular volumetric BMD of L1-2 was automatically calculated using DL and categorized according to the American College of Radiology quantitative computed tomography diagnostic criteria. BMD decreased with age in both men and women. Women had a higher peak BMD in their twenties, but lower BMD than men after 50. Among adults aged 50 and older, the prevalence of osteoporosis and osteopenia was 26.3% and 42.0%, respectively. Osteoporosis prevalence was 18.0% in men and 34.9% in women, increasing with age. Compared to previous data obtained using dual-energy X-ray absorptiometry, the prevalence of osteoporosis, particularly in men, was more than double. The automated opportunistic BMD measurements using LDCT can effectively predict osteoporosis for opportunistic screening and identify high-risk patients. Patients undergoing lung cancer screening may especially profit from this procedure requiring no additional imaging or radiation exposure.

Funder

Ministry of Trade, Industry & Energy

Ministry of Science and ICT

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3