Artificial Intelligence-Based Opportunities in Liver Pathology—A Systematic Review

Author:

Allaume Pierre1,Rabilloud Noémie2,Turlin Bruno13ORCID,Bardou-Jacquet Edouard34,Loréal Olivier3,Calderaro Julien56,Khene Zine-Eddine27,Acosta Oscar2,De Crevoisier Renaud28,Rioux-Leclercq Nathalie1,Pecot Thierry9ORCID,Kammerer-Jacquet Solène-Florence12

Affiliation:

1. Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France

2. Impact TEAM, Laboratoire Traitement du Signal et de l’Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France

3. Research Unit n°UMR1341 NuMeCan–Nutrition, Métabolismes et Cancer, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France

4. Department of Liver Diseases CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France

5. Assistance Publique-Hôpitaux de Paris, Department of Pathology Henri Mondor, 94000 Créteil, France

6. INSERM U955, Team Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers, 94000 Créteil, France

7. Department of Urology, CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France

8. Department of Radiotherapy, Centre Eugène Marquis, 35033 Rennes, France

9. Biosit Platform UAR 3480 CNRS US18 INSERM U955, Rennes 1 University, Pontchaillou Hospital, 35033 Rennes, France

Abstract

Background: Artificial Intelligence (AI)-based Deep Neural Networks (DNNs) can handle a wide range of applications in image analysis, ranging from automated segmentation to diagnostic and prediction. As such, they have revolutionized healthcare, including in the liver pathology field. Objective: The present study aims to provide a systematic review of applications and performances provided by DNN algorithms in liver pathology throughout the Pubmed and Embase databases up to December 2022, for tumoral, metabolic and inflammatory fields. Results: 42 articles were selected and fully reviewed. Each article was evaluated through the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool, highlighting their risks of bias. Conclusions: DNN-based models are well represented in the field of liver pathology, and their applications are diverse. Most studies, however, presented at least one domain with a high risk of bias according to the QUADAS-2 tool. Hence, DNN models in liver pathology present future opportunities and persistent limitations. To our knowledge, this review is the first one solely focused on DNN-based applications in liver pathology, and to evaluate their bias through the lens of the QUADAS2 tool.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3