Automatic Classification of GI Organs in Wireless Capsule Endoscopy Using a No-Code Platform-Based Deep Learning Model

Author:

Chung Joowon1ORCID,Oh Dong Jun2ORCID,Park Junseok3ORCID,Kim Su Hwan4ORCID,Lim Yun Jeong2ORCID

Affiliation:

1. Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul 01830, Republic of Korea

2. Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang 10326, Republic of Korea

3. Department of Internal Medicine, Digestive Disease Center, Institute for Digestive Research, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea

4. Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea

Abstract

The first step in reading a capsule endoscopy (CE) is determining the gastrointestinal (GI) organ. Because CE produces too many inappropriate and repetitive images, automatic organ classification cannot be directly applied to CE videos. In this study, we developed a deep learning algorithm to classify GI organs (the esophagus, stomach, small bowel, and colon) using a no-code platform, applied it to CE videos, and proposed a novel method to visualize the transitional area of each GI organ. We used training data (37,307 images from 24 CE videos) and test data (39,781 images from 30 CE videos) for model development. This model was validated using 100 CE videos that included “normal”, “blood”, “inflamed”, “vascular”, and “polypoid” lesions. Our model achieved an overall accuracy of 0.98, precision of 0.89, recall of 0.97, and F1 score of 0.92. When we validated this model relative to the 100 CE videos, it produced average accuracies for the esophagus, stomach, small bowel, and colon of 0.98, 0.96, 0.87, and 0.87, respectively. Increasing the AI score’s cut-off improved most performance metrics in each organ (p < 0.05). To locate a transitional area, we visualized the predicted results over time, and setting the cut-off of the AI score to 99.9% resulted in a better intuitive presentation than the baseline. In conclusion, the GI organ classification AI model demonstrated high accuracy on CE videos. The transitional area could be more easily located by adjusting the cut-off of the AI score and visualization of its result over time.

Funder

Ministry of Health & Welfare, Republic of Korea

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3