Automatic detection of different types of small-bowel lesions on capsule endoscopy images using a newly developed deep convolutional neural network

Author:

Otani Keita1,Nakada Ayako2,Kurose Yusuke13,Niikura Ryota2,Yamada Atsuo2,Aoki Tomonori2,Nakanishi Hiroyoshi4,Doyama Hisashi4,Hasatani Kenkei5,Sumiyoshi Tetsuya6,Kitsuregawa Masaru78,Harada Tatsuya3910,Koike Kazuhiko2

Affiliation:

1. Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan

2. Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan

3. Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan

4. Department of Gastroenterology, Ishikawa Prefectural Central Hospital, Kanazawa-shi, Ishikawa, Japan

5. Department of Gastroenterology, Fukui Prefectural Hospital, Fukui-shi, Fukui, Japan

6. The Center for Digestive Disease, Tonan Hospital, Sapporo-shi, Hokkaido, Japan

7. Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

8. National Institute of Informatics, Tokyo, Japan

9. Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan

10. Research Center for Medical Bigdata, National Institute of Informatics, Tokyo, Japan

Abstract

Abstract Background Previous computer-aided detection systems for diagnosing lesions in images from wireless capsule endoscopy (WCE) have been limited to a single type of small-bowel lesion. We developed a new artificial intelligence (AI) system able to diagnose multiple types of lesions, including erosions and ulcers, vascular lesions, and tumors. Methods We trained the deep neural network system RetinaNet on a data set of 167 patients, which consisted of images of 398 erosions and ulcers, 538 vascular lesions, 4590 tumors, and 34 437 normal tissues. We calculated the mean area under the receiver operating characteristic curve (AUC) for each lesion type using five-fold stratified cross-validation. Results The mean age of the patients was 63.6 years; 92 were men. The mean AUCs of the AI system were 0.996 (95 %CI 0.992 – 0.999) for erosions and ulcers, 0.950 (95 %CI 0.923 – 0.978) for vascular lesions, and 0.950 (95 %CI 0.913 – 0.988) for tumors. Conclusion We developed and validated a new computer-aided diagnosis system for multiclass diagnosis of small-bowel lesions in WCE images.

Publisher

Georg Thieme Verlag KG

Subject

Gastroenterology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3