Acquisition of Lower-Limb Motion Characteristics with a Single Inertial Measurement Unit—Validation for Use in Physiotherapy

Author:

Mitternacht Jürgen,Hermann AljoschaORCID,Carqueville PatrickORCID

Abstract

In physiotherapy, there is still a lack of practical measurement options to track the progress of therapy or rehabilitation following injuries to the lower limbs objectively and reproducibly yet simply and with minimal effort and time. We aim at filling this gap with the design of an IMU (inertial measurement unit) system with only one sensor placed on the tibia edge. In our study, the IMU system evaluated a set of 10 motion tests by a score value for each test and stored them in a database for a more reliable longitudinal assessment of the progress. The sensor analyzed the different motion patterns and obtained characteristic physiological parameters, such as angle ranges, and spatial and angular displacements, such as knee valgus under load. The scores represent the patient’s coordination, stability, strength and speed. To validate the IMU system, these scores were compared to corresponding values from a simultaneously recorded marker-based 3D video motion analysis of the measurements from five healthy volunteers. Score differences between the two systems were almost always within 1–3 degrees for angle measurements. Timing-related measurements were nearly completely identical. The tests on the valgus stability of the knee showed equally small deviations but should nevertheless be repeated with patients, because the healthy subjects showed no signs of instability.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference41 articles.

1. Biomechanik der Sprunggelenke [Biomechanics of the ankle joint];Zwipp;Unfallchirurg,1989

2. Verification of a Portable Motion Tracking System for Remote Management of Physical Rehabilitation of the Knee

3. Development and validation of a wearable inertial measurement system for use with lower limb exoskeletons

4. XSens MVN: Full 6DOF Human Motion Tracking Using Miniature Inertial Sensors;Roetenberg,2009

5. GAIT ANALYSIS USING IMU SENSOR

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3