RDS-DR: An Improved Deep Learning Model for Classifying Severity Levels of Diabetic Retinopathy

Author:

Bashir Ijaz1,Sajid Muhammad Zaheer1ORCID,Kalsoom Rizwana2ORCID,Ali Khan Nauman1ORCID,Qureshi Imran3ORCID,Abbas Fakhar4,Abbas Qaisar3ORCID

Affiliation:

1. Department of Computer Software Engineering, Military College of Signals, National University of Sciences and Technology, Islamabad 44000, Pakistan

2. Faculty of Computer Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23460, Pakistan

3. College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia

4. Centre for Trusted Internet and Community, National University of Singapore (NUS), Singapore 119228, Singapore

Abstract

A well-known eye disorder called diabetic retinopathy (DR) is linked to elevated blood glucose levels. Cotton wool spots, confined veins in the cranial nerve, AV nicking, and hemorrhages in the optic disc are some of its symptoms, which often appear later. Serious side effects of DR might include vision loss, damage to the visual nerves, and obstruction of the retinal arteries. Researchers have devised an automated method utilizing AI and deep learning models to enable the early diagnosis of this illness. This research gathered digital fundus images from renowned Pakistani eye hospitals to generate a new “DR-Insight” dataset and known online sources. A novel methodology named the residual-dense system (RDS-DR) was then devised to assess diabetic retinopathy. To develop this model, we have integrated residual and dense blocks, along with a transition layer, into a deep neural network. The RDS-DR system is trained on the collected dataset of 9860 fundus images. The RDS-DR categorization method demonstrated an impressive accuracy of 97.5% on this dataset. These findings show that the model produces beneficial outcomes and may be used by healthcare practitioners as a diagnostic tool. It is important to emphasize that the system’s goal is to augment optometrists’ expertise rather than replace it. In terms of accuracy, the RDS-DR technique fared better than the cutting-edge models VGG19, VGG16, Inception V-3, and Xception. This emphasizes how successful the suggested method is for classifying diabetic retinopathy (DR).

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3