Mobile-HR: An Ophthalmologic-Based Classification System for Diagnosis of Hypertensive Retinopathy Using Optimized MobileNet Architecture

Author:

Sajid Muhammad Zaheer1,Qureshi Imran2,Abbas Qaisar2ORCID,Albathan Mubarak2ORCID,Shaheed Kashif3ORCID,Youssef Ayman4ORCID,Ferdous Sehrish5,Hussain Ayyaz6

Affiliation:

1. Department of Computer Software Engineering, MCS, National University of Science and Technology, Islamabad 44000, Pakistan

2. College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia

3. Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland

4. Department of Computers and Systems, Electronics Research Institute, Cairo 12622, Egypt

5. Department of Software Engineering, National University of Modern Languages, Rawalpindi 44000, Pakistan

6. Department of Computer Science, Quaid-i-Azam University, Islamabad 44000, Pakistan

Abstract

Hypertensive retinopathy (HR) is a serious eye disease that causes the retinal arteries to change. This change is mainly due to the fact of high blood pressure. Cotton wool patches, bleeding in the retina, and retinal artery constriction are affected lesions of HR symptoms. An ophthalmologist often makes the diagnosis of eye-related diseases by analyzing fundus images to identify the stages and symptoms of HR. The likelihood of vision loss can significantly decrease the initial detection of HR. In the past, a few computer-aided diagnostics (CADx) systems were developed to automatically detect HR eye-related diseases using machine learning (ML) and deep learning (DL) techniques. Compared to ML methods, the CADx systems use DL techniques that require the setting of hyperparameters, domain expert knowledge, a huge training dataset, and a high learning rate. Those CADx systems have shown to be good for automating the extraction of complex features, but they cause problems with class imbalance and overfitting. By ignoring the issues of a small dataset of HR, a high level of computational complexity, and the lack of lightweight feature descriptors, state-of-the-art efforts depend on performance enhancement. In this study, a pretrained transfer learning (TL)-based MobileNet architecture is developed by integrating dense blocks to optimize the network for the diagnosis of HR eye-related disease. We developed a lightweight HR-related eye disease diagnosis system, known as Mobile-HR, by integrating a pretrained model and dense blocks. To increase the size of the training and test datasets, we applied a data augmentation technique. The outcomes of the experiments show that the suggested approach was outperformed in many cases. This Mobile-HR system achieved an accuracy of 99% and an F1 score of 0.99 on different datasets. The results were verified by an expert ophthalmologist. These results indicate that the Mobile-HR CADx model produces positive outcomes and outperforms state-of-the-art HR systems in terms of accuracy.

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3