Establishment of ICU Mortality Risk Prediction Models with Machine Learning Algorithm Using MIMIC-IV Database

Author:

Pang KeORCID,Li Liang,Ouyang Wen,Liu Xing,Tang Yongzhong

Abstract

Objective: The mortality rate of critically ill patients in ICUs is relatively high. In order to evaluate patients’ mortality risk, different scoring systems are used to help clinicians assess prognosis in ICUs, such as the Acute Physiology and Chronic Health Evaluation III (APACHE III) and the Logistic Organ Dysfunction Score (LODS). In this research, we aimed to establish and compare multiple machine learning models with physiology subscores of APACHE III—namely, the Acute Physiology Score III (APS III)—and LODS scoring systems in order to obtain better performance for ICU mortality prediction. Methods: A total number of 67,748 patients from the Medical Information Database for Intensive Care (MIMIC-IV) were enrolled, including 7055 deceased patients, and the same number of surviving patients were selected by the random downsampling technique, for a total of 14,110 patients included in the study. The enrolled patients were randomly divided into a training dataset (n = 9877) and a validation dataset (n = 4233). Fivefold cross-validation and grid search procedures were used to find and evaluate the best hyperparameters in different machine learning models. Taking the subscores of LODS and the physiology subscores that are part of the APACHE III scoring systems as input variables, four machine learning methods of XGBoost, logistic regression, support vector machine, and decision tree were used to establish ICU mortality prediction models, with AUCs as metrics. AUCs, specificity, sensitivity, positive predictive value, negative predictive value, and calibration curves were used to find the best model. Results: For the prediction of mortality risk in ICU patients, the AUC of the XGBoost model was 0.918 (95%CI, 0.915–0.922), and the AUCs of logistic regression, SVM, and decision tree were 0.872 (95%CI, 0.867–0.877), 0.872 (95%CI, 0.867–0.877), and 0.852 (95%CI, 0.847–0.857), respectively. The calibration curves of logistic regression and support vector machine performed better than the other two models in the ranges 0–40% and 70%–100%, respectively, while XGBoost performed better in the range of 40–70%. Conclusions: The mortality risk of ICU patients can be better predicted by the characteristics of the Acute Physiology Score III and the Logistic Organ Dysfunction Score with XGBoost in terms of ROC curve, sensitivity, and specificity. The XGBoost model could assist clinicians in judging in-hospital outcome of critically ill patients, especially in patients with a more uncertain survival outcome.

Funder

the National Key R&D Programme of China

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3