Abstract
Background and Objective: In 2019, a corona virus disease (COVID-19) was detected in China that affected millions of people around the world. On 11 March 2020, the WHO declared this disease a pandemic. Currently, more than 200 countries in the world have been affected by this disease. The manual diagnosis of this disease using chest X-ray (CXR) images and magnetic resonance imaging (MRI) is time consuming and always requires an expert person; therefore, researchers introduced several computerized techniques using computer vision methods. The recent computerized techniques face some challenges, such as low contrast CTX images, the manual initialization of hyperparameters, and redundant features that mislead the classification accuracy. Methods: In this paper, we proposed a novel framework for COVID-19 classification using deep Bayesian optimization and improved canonical correlation analysis (ICCA). In this proposed framework, we initially performed data augmentation for better training of the selected deep models. After that, two pre-trained deep models were employed (ResNet50 and InceptionV3) and trained using transfer learning. The hyperparameters of both models were initialized through Bayesian optimization. Both trained models were utilized for feature extractions and fused using an ICCA-based approach. The fused features were further optimized using an improved tree growth optimization algorithm that finally was classified using a neural network classifier. Results: The experimental process was conducted on five publically available datasets and achieved an accuracy of 99.6, 98.5, 99.9, 99.5, and 100%. Conclusion: The comparison with recent methods and t-test-based analysis showed the significance of this proposed framework.
Funder
Deanship of Scientific Research at King Khalid University
Reference55 articles.
1. A novel coronavirus from patients with pneumonia in China, 2019;Zhu;N. Engl. J. Med.,2020
2. A Comparison of the Clinical, Viral, Pathologic, and Immunologic Features of Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus 2019 (COVID-19) Diseases;Barth;Arch. Pathol. Lab. Med.,2021
3. Origin and evolution of pathogenic coronaviruses;Cui;Nat. Rev. Microbiol.,2019
4. Clinical improvement, outcomes, antiviral activity, and costs associated with early treatment with remdesivir for patients with coronavirus disease 2019 (COVID-19);Wong;Clin. Infect. Dis.,2022
5. Deep learning-based meta-classifier approach for COVID-19 classification using CT scan and chest X-ray images;Ravi;Multimed. Syst.,2022
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献