D2BOF-COVIDNet: A Framework of Deep Bayesian Optimization and Fusion-Assisted Optimal Deep Features for COVID-19 Classification Using Chest X-ray and MRI Scans

Author:

Hamza Ameer,Khan Muhammad AttiqueORCID,Alhaisoni Majed,Al Hejaili Abdullah,Shaban Khalid Adel,Alsubai ShtwaiORCID,Alasiry Areej,Marzougui Mehrez

Abstract

Background and Objective: In 2019, a corona virus disease (COVID-19) was detected in China that affected millions of people around the world. On 11 March 2020, the WHO declared this disease a pandemic. Currently, more than 200 countries in the world have been affected by this disease. The manual diagnosis of this disease using chest X-ray (CXR) images and magnetic resonance imaging (MRI) is time consuming and always requires an expert person; therefore, researchers introduced several computerized techniques using computer vision methods. The recent computerized techniques face some challenges, such as low contrast CTX images, the manual initialization of hyperparameters, and redundant features that mislead the classification accuracy. Methods: In this paper, we proposed a novel framework for COVID-19 classification using deep Bayesian optimization and improved canonical correlation analysis (ICCA). In this proposed framework, we initially performed data augmentation for better training of the selected deep models. After that, two pre-trained deep models were employed (ResNet50 and InceptionV3) and trained using transfer learning. The hyperparameters of both models were initialized through Bayesian optimization. Both trained models were utilized for feature extractions and fused using an ICCA-based approach. The fused features were further optimized using an improved tree growth optimization algorithm that finally was classified using a neural network classifier. Results: The experimental process was conducted on five publically available datasets and achieved an accuracy of 99.6, 98.5, 99.9, 99.5, and 100%. Conclusion: The comparison with recent methods and t-test-based analysis showed the significance of this proposed framework.

Funder

Deanship of Scientific Research at King Khalid University

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3