Deep Learning Versus Iterative Reconstruction for CT Pulmonary Angiography in the Emergency Setting: Improved Image Quality and Reduced Radiation Dose

Author:

Lenfant MarcORCID,Chevallier Olivier,Comby Pierre-OlivierORCID,Secco Grégory,Haioun KarimORCID,Ricolfi Frédéric,Lemogne Brivaël,Loffroy RomaricORCID

Abstract

To compare image quality and the radiation dose of computed tomography pulmonary angiography (CTPA) subjected to the first deep learning-based image reconstruction (DLR) (50%) algorithm, with images subjected to the hybrid-iterative reconstruction (IR) technique (50%). One hundred forty patients who underwent CTPA for suspected pulmonary embolism (PE) between 2018 and 2019 were retrospectively reviewed. Image quality was assessed quantitatively (image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR)) and qualitatively (on a 5-point scale). Radiation dose parameters (CT dose index, CTDIvol; and dose-length product, DLP) were also recorded. Ninety-three patients were finally analyzed, 48 with hybrid-IR and 45 with DLR images. The image noise was significantly lower and the SNR (24.4 ± 5.9 vs. 20.7 ± 6.1) and CNR (21.8 ± 5.8 vs. 18.6 ± 6.0) were significantly higher on DLR than hybrid-IR images (p < 0.01). DLR images received a significantly higher score than hybrid-IR images for image quality, with both soft (4.4 ± 0.7 vs. 3.8 ± 0.8) and lung (4.1 ± 0.7 vs. 3.6 ± 0.9) filters (p < 0.01). No difference in diagnostic confidence level for PE between both techniques was found. CTDIvol (4.8 ± 1.4 vs. 4.0 ± 1.2 mGy) and DLP (157.9 ± 44.9 vs. 130.8 ± 41.2 mGy∙cm) were lower on DLR than hybrid-IR images. DLR both significantly improved the image quality and reduced the radiation dose of CTPA examinations as compared to the hybrid-IR technique.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3