Measurement of solid size in early-stage lung adenocarcinoma by virtual 3D thin-section CT applied artificial intelligence

Author:

Iwano Shingo,Kamiya Shinichiro,Ito Rintaro,Kudo Akira,Kitamura Yoshiro,Nakamura Keigo,Naganawa Shinji

Abstract

AbstractAn artificial intelligence (AI) system that reconstructs virtual 3D thin-section CT (TSCT) images from conventional CT images by applying deep learning was developed. The aim of this study was to investigate whether virtual and real TSCT could measure the solid size of early-stage lung adenocarcinoma. The pair of original thin-CT and simulated thick-CT from the training data with TSCT images (thickness, 0.5–1.0 mm) of 2700 pulmonary nodules were used to train the thin-CT generator in the generative adversarial network (GAN) framework and develop a virtual TSCT AI system. For validation, CT images of 93 stage 0–I lung adenocarcinomas were collected, and virtual TSCTs were reconstructed from conventional 5-mm thick-CT images using the AI system. Two radiologists measured and compared the solid size of tumors on conventional CT and virtual and real TSCT. The agreement between the two observers showed an almost perfect agreement on the virtual TSCT for solid size measurements (intraclass correlation coefficient = 0.967, P < 0.001, respectively). The virtual TSCT had a significantly stronger correlation than that of conventional CT (P = 0.003 and P = 0.001, respectively). The degree of agreement between the clinical T stage determined by virtual TSCT and the clinical T stage determined by real TSCT was excellent in both observers (k = 0.882 and k = 0.881, respectively). The AI system developed in this study was able to measure the solid size of early-stage lung adenocarcinoma on virtual TSCT as well as on real TSCT.

Funder

Fujifilm Corporation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3