Compact Linear Flow Phantom Model for Retinal Blood-Flow Evaluation

Author:

Raghavendra Achyut J.12ORCID,Elhusseiny Abdelrahman M.3,Agrawal Anant2ORCID,Liu Zhuolin2ORCID,Hammer Daniel X.2ORCID,Saeedi Osamah J.1ORCID

Affiliation:

1. Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA

2. Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA

3. Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA

Abstract

Impaired retinal blood flow is associated with ocular diseases such as glaucoma, macular degeneration, and diabetic retinopathy. Among several ocular imaging techniques developed to measure retinal blood flow both invasively and non-invasively, adaptive optics (AO)-enabled scanning laser ophthalmoscopy (AO-SLO) resolves individual red blood cells and provides a high resolution with which to measure flow across retinal microvasculature. However, cross-validation of flow measures remains a challenge owing to instrument and patient-specific variability in each imaging technique. Hence, there is a critical need for a well-controlled clinical flow phantom for standardization and to establish blood-flow measures as clinical biomarkers for early diagnosis. Here, we present the design and validation of a simple, compact, portable, linear flow phantom based on a direct current motor and a conveyor-belt system that provides linear velocity tuning within the retinal microvasculature range (0.5–7 mm/s). The model was evaluated using a sensitive AO-SLO line-scan technique, which showed a <6% standard deviation from the true velocity. Further, a clinical SLO instrument showed a linear correlation with the phantom’s true velocity (r2 > 0.997). This model has great potential to calibrate, evaluate, and improve the accuracy of existing clinical imaging systems for retinal blood flow and aid in the diagnosis of ocular diseases with abnormal blood flow.

Funder

U.S. Food and Drug Administration through the Center of Excellence in Regulatory Science and Innovation

National Eye Institute/National Institutes of Health

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3