3D Printed Personalized External Aortic Root Model in Marfan Syndrome with Isolated Sinus of Valsalva Aneurysm Caused by a Novel Pathogenic FBN1 p.Gly1127Cys Variant

Author:

Cho Jung SunORCID,Park JoonhongORCID,Kwon Jong Bum,Kim Dae-Won,Park Mahn-Won

Abstract

The major cause of death in Marfan syndrome (MFS) is cardiovascular complications, particularly progressive dilatation of the proximal aorta, rendering these patients at risk of aortic dissection or fatal rupture. We report a 3D printed personalized external aortic root model for MFS with an isolated sinus of Valsalva aneurysm caused by a novel pathogenic FBN1 variant. A 67-year-old female with a history of lens dislocation and retinal detachment in the left eye was admitted for the evaluation of resting dyspnea several months prior. Transesophageal and transthoracic echocardiography revealed severe aortic valve regurgitation and a large left coronary sinus of Valsalva aneurysm in the proband. Sanger sequencing identified a heterozygous p.Gly1127Cys variant in the FBN1 gene; previously, a mutation at this amino acid position was described as pathogenic (p.Gly1127Ser; rs137854468). A 3D printed personalized external aortic root model based on a multidetector computed tomography scan was constructed to illustrate the location of the ostium of the left main coronary artery on the aneurysm of the left coronary artery cusp. Aortic root replacement with the Bentall procedure matched the exact shape of the 3D printed model. Creation of a 3D printed patient-specific model could be useful in facilitating the development of next-generation medical devices and resolving the risks of postoperative complications and aortic root disease.

Funder

The authors wish to acknowledge the financial support of the Catholic Medical Center Research Foundation made in 2021

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3