Gamma-Glutamyl Transferase (GGT) Is the Leading External Quality Assurance Predictor of ISO15189 Compliance for Pathology Laboratories

Author:

Lidbury Brett A.ORCID,Koerbin Gus,Richardson Alice M.ORCID,Badrick Tony

Abstract

Pathology results are central to modern medical practice, informing diagnosis and patient management. To ensure high standards from pathology laboratories, regulators require compliance with international and local standards. In Australia, the monitoring and regulation of medical laboratories are achieved by conformance to ISO15189-National Pathology Accreditation Advisory Council standards, as assessed by the National Association of Testing Authorities (NATA), and an external quality assurance (EQA) assessment via the Royal College of Pathologists of Australasia Quality Assurance Program (RCPAQAP). While effective individually, integration of data collected by NATA and EQA testing promises advantages for the early detection of technical or management problems in the laboratory, and enhanced ongoing quality assessment. Random forest (RF) machine learning (ML) previously identified gamma-glutamyl transferase (GGT) as a leading predictor of NATA compliance condition reporting. In addition to further RF investigations, this study also deployed single decision trees and support vector machines (SVM) models that included creatinine, electrolytes and liver function test (LFT) EQA results. Across all analyses, GGT was consistently the top-ranked predictor variable, validating previous observations from Australian laboratories. SVM revealed broad patterns of predictive EQA marker interactions with NATA outcomes, and the distribution of GGT relative deviation suggested patterns by which to identify other strong EQA predictors of NATA outcomes. An integrated model of pathology quality assessment was successfully developed, via the prediction of NATA outcomes by EQA results. GGT consistently ranked as the best predictor variable, identified by combining recursive partitioning and SVM ML strategies.

Funder

Quality Use of Pathology Programme (QUPP), The Commonwealth Department of Health, Canberra ACT, Australia

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3