Enhancing Diagnostic Decision-Making: Ensemble Learning Techniques for Reliable Stress Level Classification

Author:

Anand Raghav V.1ORCID,Md Abdul Quadir1,Urooj Shabana2ORCID,Mohan Senthilkumar3,Alawad Mohamad A.4ORCID,C. Adittya1

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India

2. Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

3. School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India

4. Department of Electrical Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia

Abstract

An intense level of academic pressure causes students to experience stress, and if this stress is not addressed, it can cause adverse mental and physical effects. Since the pandemic situation, students have received more assignments and other tasks due to the shift of classes to an online mode. Students may not realize that they are stressed, but it may be evident from other factors, including sleep deprivation and changes in eating habits. In this context, this paper presents a novel ensemble learning approach that proposes an architecture for stress level classification. It analyzes certain factors such as the sleep hours, productive time periods, screen time, weekly assignments and their submission statuses, and the studying methodology that contribute to stress among the students by collecting a survey from the student community. The survey data are preprocessed to categorize stress levels into three categories: highly stressed, manageable stress, and no stress. For the analysis of the minority class, oversampling methodology is used to remove the imbalance in the dataset, and decision tree, random forest classifier, AdaBoost, gradient boost, and ensemble learning algorithms with various combinations are implemented. To assess the model’s performance, different metrics were used, such as the confusion matrix, accuracy, precision, recall, and F1 score. The results showed that the efficient ensemble learning academic stress classifier gave an accuracy of 93.48% and an F1 score of 93.14%. Fivefold cross-validation was also performed, and an accuracy of 93.45% was achieved. The receiver operating characteristic curve (ROC) value gave an accuracy of 98% for the no-stress category, while providing a 91% true positive rate for manageable and high-stress classes. The proposed ensemble learning with fivefold cross-validation outperformed various state-of-the-art algorithms to predict the stress level accurately. By using these results, students can identify areas for improvement, thereby reducing their stress levels and altering their academic lifestyles, thereby making our stress prediction approach more effective.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3