Abstract
Background: It is known that oral diseases such as periodontal (gum) disease are closely linked to various systemic diseases and disorders. Deep learning advances have the potential to make major contributions to healthcare, particularly in the domains that rely on medical imaging. Incorporating non-imaging information based on clinical and laboratory data may allow clinicians to make more comprehensive and accurate decisions. Methods: Here, we developed a multimodal deep learning method to predict systemic diseases and disorders from oral health conditions. A dual-loss autoencoder was used in the first phase to extract periodontal disease-related features from 1188 panoramic radiographs. Then, in the second phase, we fused the image features with the demographic data and clinical information taken from electronic health records (EHR) to predict systemic diseases. We used receiver operation characteristics (ROC) and accuracy to evaluate our model. The model was further validated by an unseen test dataset. Findings: According to our findings, the top three most accurately predicted chapters, in order, are the Chapters III, VI and IX. The results indicated that the proposed model could predict systemic diseases belonging to Chapters III, VI and IX, with AUC values of 0.92 (95% CI, 0.90–94), 0.87 (95% CI, 0.84–89) and 0.78 (95% CI, 0.75–81), respectively. To assess the robustness of the models, we performed the evaluation on the unseen test dataset for these chapters and the results showed an accuracy of 0.88, 0.82 and 0.72 for Chapters III, VI and IX, respectively. Interpretation: The present study shows that the combination of panoramic radiograph and clinical oral features could be considered to train a fusion deep learning model for predicting systemic diseases and disorders.
Funder
Hong Kong Research Grants Council
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献