Development and Validation of an Ultrasound-Based Radiomics Nomogram for Identifying HER2 Status in Patients with Breast Carcinoma

Author:

Guo Yinghong,Wu JiangfengORCID,Wang Yunlai,Jin Yun

Abstract

(1) Objective: To evaluate the performance of ultrasound-based radiomics in the preoperative prediction of human epidermal growth factor receptor 2-positive (HER2+) and HER2− breast carcinoma. (2) Methods: Ultrasound images from 309 patients (86 HER2+ cases and 223 HER2− cases) were retrospectively analyzed, of which 216 patients belonged to the training set and 93 patients assigned to the time-independent validation set. The region of interest of the tumors was delineated, and the radiomics features were extracted. Radiomics features underwent dimensionality reduction analyses using the intra-class correlation coefficient (ICC), Mann–Whitney U test, and the least absolute shrinkage and selection operator (LASSO) algorithm. The radiomics score (Rad-score) for each patient was calculated through a linear combination of the nonzero coefficient features. The support vector machine (SVM), K nearest neighbors (KNN), logistic regression (LR), decision tree (DT), random forest (RF), naive Bayes (NB) and XGBoost (XGB) machine learning classifiers were trained to establish prediction models based on the Rad-score. A clinical model based on significant clinical features was also established. In addition, the logistic regression method was used to integrate Rad-score and clinical features to generate the nomogram model. The leave-one-out cross validation (LOOCV) method was used to validate the reliability and stability of the model. (3) Results: Among the seven classifier models, the LR achieved the best performance in the validation set, with an area under the receiver operating characteristic curve (AUC) of 0.786, and was obtained as the Rad-score model, while the RF performed the worst. Tumor size showed a statistical difference between the HER2+ and HER2− groups (p = 0.028). The nomogram model had a slightly higher AUC than the Rad-score model (AUC, 0.788 vs. 0.786), but no statistical difference (Delong test, p = 0.919). The LOOCV method yielded a high median AUC of 0.790 in the validation set. (4) Conclusion: The Rad-score model performs best among the seven classifiers. The nomogram model based on Rad-score and tumor size has slightly better predictive performance than the Rad-score model, and it has the potential to be utilized as a routine modality for preoperatively determining HER2 status in BC patients non-invasively.

Funder

Jinhua Science and Technology Bureau Scientific Research Project

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3