New Real-Time Impulse Noise Removal Method Applied to Chest X-ray Images

Author:

Rashid NasrORCID,Berriri Kamel,Albekairi Mohammed,Kaaniche KhaledORCID,Ben Atitallah AhmedORCID,Khan Muhammad AttiqueORCID,El-Hamrawy Osama I.ORCID

Abstract

In this paper, we propose a new Modified Laplacian Vector Median Filter (MLVMF) for real-time denoising complex images corrupted by “salt and pepper” impulsive noise. The method consists of two rounds with three steps each: the first round starts with the identification of pixels that may be contaminated by noise using a Modified Laplacian Filter. Then, corrupted pixels pass a neighborhood-based validation test. Finally, the Vector Median Filter is used to replace noisy pixels. The MLVMF uses a 5 × 5 window to observe the intensity variations around each pixel of the image with a rotation step of π/8 while the classic Laplacian filters often use rotation steps of π/2 or π/4. We see better identification of noise-corrupted pixels thanks to this rotation step refinement. Despite this advantage, a high percentage of the impulsive noise may cause two or more corrupted pixels (with the same intensity) to collide, preventing the identification of noise-corrupted pixels. A second round is then necessary using a second set of filters, still based on the Laplacian operator, but allowing focusing only on the collision phenomenon. To validate our method, MLVMF is firstly tested on standard images, with a noise percentage varying from 3% to 30%. Obtained performances in terms of processing time, as well as image restoration quality through the PSNR (Peak Signal to Noise Ratio) and the NCD (Normalized Color Difference) metrics, are compared to the performances of VMF (Vector Median Filter), VMRHF (Vector Median-Rational Hybrid Filter), and MSMF (Modified Switching Median Filter). A second test is performed on several noisy chest x-ray images used in cardiovascular disease diagnosis as well as COVID-19 diagnosis. The proposed method shows a very good quality of restoration on this type of image, particularly when the percentage of noise is high. The MLVMF provides a high PSNR value of 5.5% and a low NCD value of 18.2%. Finally, an optimized Field-Programmable Gate Array (FPGA) design is proposed to implement the proposed method for real-time processing. The proposed hardware implementation allows an execution time equal to 9 ms per 256 × 256 color image.

Funder

Deanship of Scientific Research at Jouf University

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference56 articles.

1. Vector median filters;Astola;Proc. IEEE,1990

2. Smolka, B. Robust Sharpening Vector Median Filter. Proceedings of the International Automatic Control Conference (CACS).

3. Smolka, B., Szczepanski, M., Plataniotis, K., and Venetsanopoulos, A. On the fast modified vector median filter. Proceedings of the Canadian Conference on Electrical and Computer Engineering 2001, Volume 2.

4. Three-dimensional median-related filters for color image sequence filtering;Viero;IEEE Trans. Circuits Syst. Video Technol.,1994

5. Sharpening vector median filters;Lukac;Signal Process.,2007

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3