Accelerated FPGA-Based Vector Directional Filter for Real-Time Color Image Denoising with Enhanced Performance

Author:

Alanazi Turki M.

Abstract

This paper presents an accelerated implementation of the Vector Directional Filter (VDF) on a Field Programmable Gate Array (FPGA) for real-time denoising of color images. The VDF effectively suppresses noise while preserving edges and fine details, making it ideal for a range of applications such as satellite and multispectral biomedical imaging. However, the filter's high computational complexity poses challenges for real-time processing. Existing solutions either fail to meet real-time execution requirements or compromise image quality through hardware implementation approximations. To overcome these challenges, we first model the VDF using C/C++ programming, and subsequently design an efficient floating-point hardware architecture employing the High-Level Synthesis (HLS) flow. Optimal directives are selected using the Xilinx Vivado HLS tool. The VDF architecture is then integrated as a coprocessor with the Cortex-A53 hardcore processor in the XCZU9EG FPGA. To enhance data bandwidth between software and hardware components, three Direct Memory Access (DMAs) units are utilized to transfer three image lines in parallel. Furthermore, internal memory is implemented on the XCZU9EG FPGA, providing increased flexibility for managing the restored image. The VDF Software/Hardware (SW/HW) design's robustness and accuracy are validated through experimental studies on the ZCU102 board. Our design accelerates the filtering process by 21 times, maintaining visual quality and effectively removing noise from color images compared to the VDF SW design. Additionally, our solution outperforms existing approaches in terms of filtered image quality and processing time, showing a 24% improvement in the worst-case scenario.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3