The Construction and Evaluation of a Multi-Task Convolutional Neural Network for a Cone-Beam Computed-Tomography-Based Assessment of Implant Stability

Author:

Huang Zelun,Zheng HaoranORCID,Huang Junqiang,Yang Yang,Wu Yupeng,Ge Linhu,Wang Liping

Abstract

Objectives: Assessing implant stability is integral to dental implant therapy. This study aimed to construct a multi-task cascade convolution neural network to evaluate implant stability using cone-beam computed tomography (CBCT). Methods: A dataset of 779 implant coronal section images was obtained from CBCT scans, and matching clinical information was used for the training and test datasets. We developed a multi-task cascade network based on CBCT to assess implant stability. We used the MobilenetV2-DeeplabV3+ semantic segmentation network, combined with an image processing algorithm in conjunction with prior knowledge, to generate the volume of interest (VOI) that was eventually used for the ResNet-50 classification of implant stability. The performance of the multitask cascade network was evaluated in a test set by comparing the implant stability quotient (ISQ), measured using an Osstell device. Results: The cascade network established in this study showed good prediction performance for implant stability classification. The binary, ternary, and quaternary ISQ classification test set accuracies were 96.13%, 95.33%, and 92.90%, with mean precisions of 96.20%, 95.33%, and 93.71%, respectively. In addition, this cascade network evaluated each implant’s stability in only 3.76 s, indicating high efficiency. Conclusions: To our knowledge, this is the first study to present a CBCT-based deep learning approach CBCT to assess implant stability. The multi-task cascade network accomplishes a series of tasks related to implant denture segmentation, VOI extraction, and implant stability classification, and has good concordance with the ISQ.

Funder

the Key Research Platforms and Research Projects in General Universities of the Guangdong Provincial Education Department

Guangzhou Science and Technology Bureau, Guangzhou Basic Research Program Project

Guangzhou Medical University

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3