Author:
Hwang In-Kyung,Kang Se-Ryong,Yang Su,Kim Jun-Min,Kim Jo-Eun,Huh Kyung-Hoe,Lee Sam-Sun,Heo Min-Suk,Yi Won-Jin,Kim Tae-Il
Abstract
AbstractThe objective of this study was to automatically classify surgical plans for maxillary sinus floor augmentation in implant placement at the maxillary posterior edentulous region using a 3D distance-guided network on CBCT images. We applied a modified ABC classification method consisting of five surgical approaches for the deep learning model. The proposed deep learning model (SinusC-Net) consisted of two stages of detection and classification according to the modified classification method. In detection, five landmarks on CBCT images were automatically detected using a volumetric regression network; in classification, the CBCT images were automatically classified as to the five surgical approaches using a 3D distance-guided network. The mean MRE for landmark detection was 0.87 mm, and SDR for 2 mm or lower, 95.47%. The mean accuracy, sensitivity, specificity, and AUC for classification by the SinusC-Net were 0.97, 0.92, 0.98, and 0.95, respectively. The deep learning model using 3D distance-guidance demonstrated accurate detection of 3D anatomical landmarks, and automatic and accurate classification of surgical approaches for sinus floor augmentation in implant placement at the maxillary posterior edentulous region.
Funder
Ministry of Science and ICT; Ministry of Trade, Industry, and Energy; Ministry of Health & Welfare; Ministry of Food and Drug Safety
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献