A Machine Learning Approach for Detecting Idiopathic REM Sleep Behavior Disorder

Author:

Salsone Maria,Quattrone Andrea,Vescio BasilioORCID,Ferini-Strambi Luigi,Quattrone Aldo

Abstract

Background and purpose: Growing evidence suggests that Machine Learning (ML) models can assist the diagnosis of neurological disorders. However, little is known about the potential application of ML in diagnosing idiopathic REM sleep behavior disorder (iRBD), a parasomnia characterized by a high risk of phenoconversion to synucleinopathies. This study aimed to develop a model using ML algorithms to identify iRBD patients and test its accuracy. Methods: Data were acquired from 32 participants (20 iRBD patients and 12 controls). All subjects underwent a video-polysomnography. In all subjects, we measured the components of heart rate variability (HRV) during 24 h recordings and calculated night-to-day ratios (cardiac autonomic indices). Discriminating performances of single HRV features were assessed. ML models based on Logistic Regression (LR), Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) were trained on HRV data. The utility of HRV features and ML models for detecting iRBD was evaluated by area under the ROC curve (AUC), sensitivity, specificity and accuracy corresponding to optimal models. Results: Cardiac autonomic indices had low performances (accuracy 63–69%) in distinguishing iRBD from control subjects. By contrast, the RF model performed the best, with excellent accuracy (94%), sensitivity (95%) and specificity (92%), while XGBoost showed accuracy (91%), specificity (83%) and sensitivity (95%). The mean triangular index during wake (TIw) was the best discriminating feature between iRBD and HC, with 81% accuracy, reaching 84% accuracy when combined with VLF power during sleep using an LR model. Conclusions: Our findings demonstrated that ML algorithms can accurately identify iRBD patients. Our model could be used in clinical practice to facilitate the early detection of this form of RBD.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3