Human Transcriptome Array Analysis Identifies CDR2 as a Novel Suppressed Gene for Kawasaki Disease

Author:

Huang Ying-HsienORCID,Chen Kuang-Den,Kuo Kuang-CheORCID,Guo Mindy Ming-Huey,Chang Ling-Sai,Yang Ya-LingORCID,Kuo Ho-ChangORCID

Abstract

Kawasaki disease (KD) is a febrile childhood vasculitis that involves the coronary arteries. Most previous studies have focused on the genes activated in the acute phase of KD. However, in this study, we focused on suppressed genes in the acute stage of KD and identified novel targets with clinical significance and potential prognostic value for KD patients. We enrolled 18 patients with KD, 18 healthy controls (HC), and 18 febrile controls (FC) for human transcriptome array analysis. Another 19 healthy controls, 20 febrile controls, and 31 patients with KD were recruited for RT-PCR validation of target mRNA expressions. The results of Human Transcriptome Array (HTA) 2.0 showed 461 genes that were significantly higher in KD and then normalized after IVIG, as well as 99 suppressed genes in KD. Furthermore, we identified the four genes in KD with the most downregulation, including BCL11B, DUSP2, DDX24, and CDR2, as well as the upregulation of their expression following IVIG administration. The mRNA expression of CDR2 by qRT-PCR was the most compatible with the pattern of the HTA2.0 results. Furthermore, we found higher DDX24 mRNA expression in KD patients with CAL when compared to those without CAL 3 weeks after IVIG administration. In summary, activated gene expression represented a majority in the immune response of KD. In this study, we identified CDR2 as a novel suppressed gene for Kawasaki disease via human transcriptome array analysis and DDX24 associated with CAL formation, which may contribute to further understanding of CAL pathogenesis in KD.

Funder

Ministry of Science and Technology of Taiwan

Chang Gung Memorial Hospital

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3