Using Machine Learning Techniques to Predict MACE in Very Young Acute Coronary Syndrome Patients

Author:

Juan-Salvadores PabloORCID,Veiga Cesar,Jiménez Díaz Víctor Alfonso,Guitián González Alba,Iglesia Carreño Cristina,Martínez Reglero CristinaORCID,Baz Alonso José Antonio,Caamaño Isorna FranciscoORCID,Romo Andrés Iñiguez

Abstract

Coronary artery disease is a chronic disease with an increased expression in the elderly. However, different studies have shown an increased incidence in young subjects over the last decades. The prediction of major adverse cardiac events (MACE) in very young patients has a significant impact on medical decision-making following coronary angiography and the selection of treatment. Different approaches have been developed to identify patients at a higher risk of adverse outcomes after their coronary anatomy is known. This is a prognostic study of combined data from patients ≤40 years old undergoing coronary angiography (n = 492). We evaluated whether different machine learning (ML) approaches could predict MACE more effectively than traditional statistical methods using logistic regression (LR). Our most effective model for long-term follow-up (60 ± 27 months) was random forest (RF), obtaining an area under the curve (AUC) = 0.79 (95%CI 0.69–0.88), in contrast with LR, obtaining AUC = 0.66 (95%CI 0.53–0.78, p = 0.021). At 1-year follow-up, the RF test found AUC 0.80 (95%CI 0.71–0.89) vs. LR 0.50 (95%CI 0.33–0.66, p < 0.001). The results of our study support the hypothesis that ML methods can improve both the identification of MACE risk patients and the prediction vs. traditional statistical techniques even in a small sample size. The application of ML techniques to focus the efforts on the detection of MACE in very young patients after coronary angiography could help tailor upfront follow-up strategies in such young patients according to their risk of MACE and to be used for proper assignment of health resources.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3