MedKnee: A New Deep Learning-Based Software for Automated Prediction of Radiographic Knee Osteoarthritis

Author:

Touahema Said12ORCID,Zaimi Imane3,Zrira Nabila4,Ngote Mohamed Nabil15ORCID,Doulhousne Hassan6ORCID,Aouial Mohsine7

Affiliation:

1. MECAtronique Team, CPS2E Laboratory, Ecole Nationale Supérieure des Mines de Rabat, Rabat 10000, Morocco

2. Ministry of Health and Social Protection, Provincial Ministerial Administration of El Kelaa des Sraghna, El Kelaa des Sraghna 43000, Morocco

3. Multidisciplinary Research Laboratory for Science, Technology and Society, Department of Computer Engineering and Mathematics, Higher School of Technology, Khenifra, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco

4. ADOS Team, LISTD Laboratory, Ecole Nationale Supérieure des Mines de Rabat, Rabat 10000, Morocco

5. Institut Supérieur d’Ingénierie et Technologies de Santé/Faculté de Médecine Abulcasis, Université Internationale Abulcasis des Sciences de la Santé, Rabat 10000, Morocco

6. Avicenne Military Hospital, Faculty of Medicine and Pharmacy, Marrakech 40000, Morocco

7. Ministry of Health and Social Protection, Provincial Hospital Center of El Kelaa des Sraghna, El Kelaa des Sraghna 43000, Morocco

Abstract

In computer-aided medical diagnosis, deep learning techniques have shown that it is possible to offer performance similar to that of experienced medical specialists in the diagnosis of knee osteoarthritis. In this study, a new deep learning (DL) software, called “MedKnee” is developed to assist physicians in the diagnosis process of knee osteoarthritis according to the Kellgren and Lawrence (KL) score. To accomplish this task, 5000 knee X-ray images obtained from the Osteoarthritis Initiative public dataset (OAI) were divided into train, valid, and test datasets in a ratio of 7:1:2 with a balanced distribution across each KL grade. The pre-trained Xception model is used for transfer learning and then deployed in a Graphical User Interface (GUI) developed with Tkinter and Python. The suggested software was validated on an external public database, Medical Expert, and compared with a rheumatologist’s diagnosis on a local database, with the involvement of a radiologist for arbitration. The MedKnee achieved an accuracy of 95.36% when tested on Medical Expert-I and 94.94% on Medical Expert-II. In the local dataset, the developed tool and the rheumatologist agreed on 23 images out of 30 images (74%). The MedKnee’s satisfactory performance makes it an effective assistant for doctors in the assessment of knee osteoarthritis.

Publisher

MDPI AG

Reference35 articles.

1. Ahmed, S.M., and Mstafa, R.J. (2022). Identifying Severity Grading of Knee Osteoarthritis from X-ray Images Using an Efficient Mixture of Deep Learning and Machine Learning Models. Diagnostics, 12.

2. Belharar, F.Z., and Zrira, N. (2022, January 28–30). DeepRetino: Ophthalmic Disease Classification from Retinal Images using Deep Learning. Proceedings of the IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), Hammamet, Tunisia. Available online: https://ieeexplore.ieee.org/document/9875570.

3. Zrira, N., Benmiloud, I., Marzouki, K., Farahat, Z., Zaimi, I., El Ghali, B., El Midaoui, O., Megdiche, K., and Ngote, N. (2022, January 28–30). Automatic and Fast Whole Heart Segmentation for 3D Reconstruction. Proceedings of the IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), Hammamet, Tunisia. Available online: https://ieeexplore.ieee.org/document/9875773.

4. Jimi, A., Abouche, H., Zrira, N., and Benmiloud, I. (2022, January 10–13). Automated Skin Lesion Segmentation using VGG-UNet. Proceedings of the 2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Istanbul, Turkey. Available online: https://ieeexplore.ieee.org/document/10068634.

5. Abouche, H., Jimi, A., and Benmiloud, I. (2022, January 10–13). Segmentation and Classification of Dermoscopic Skin Cancer on Green Channel. Proceedings of the 2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Istanbul, Turkey. Available online: https://ieeexplore.ieee.org/document/10068614.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3