Identifying Severity Grading of Knee Osteoarthritis from X-ray Images Using an Efficient Mixture of Deep Learning and Machine Learning Models

Author:

Ahmed Sozan Mohammed,Mstafa Ramadhan J.ORCID

Abstract

Recently, many diseases have negatively impacted people’s lifestyles. Among these, knee osteoarthritis (OA) has been regarded as the primary cause of activity restriction and impairment, particularly in older people. Therefore, quick, accurate, and low-cost computer-based tools for the early prediction of knee OA patients are urgently needed. In this paper, as part of addressing this issue, we developed a new method to efficiently diagnose and classify knee osteoarthritis severity based on the X-ray images to classify knee OA in (i.e., binary and multiclass) in order to study the impact of different class-based, which has not yet been addressed in previous studies. This will provide physicians with a variety of deployment options in the future. Our proposed models are basically divided into two frameworks based on applying pre-trained convolutional neural networks (CNN) for feature extraction as well as fine-tuning the pre-trained CNN using the transfer learning (TL) method. In addition, a traditional machine learning (ML) classifier is used to exploit the enriched feature space to achieve better knee OA classification performance. In the first one, we developed five classes-based models using a proposed pre-trained CNN for feature extraction, principal component analysis (PCA) for dimensionality reduction, and support vector machine (SVM) for classification. While in the second framework, a few changes were made to the steps in the first framework, the concept of TL was used to fine-tune the proposed pre-trained CNN from the first framework to fit the two classes, three classes, and four classes-based models. The proposed models are evaluated on X-ray data, and their performance is compared with the existing state-of-the-art models. It is observed through conducted experimental analysis to demonstrate the efficacy of the proposed approach in improving the classification accuracy in both multiclass and binary class-based in the OA case study. Nonetheless, the empirical results revealed that the fewer multiclass labels used, the better performance achieved, with the binary class labels outperforming all, which reached a 90.8% accuracy rate. Furthermore, the proposed models demonstrated their contribution to early classification in the first stage of the disease to help reduce its progression and improve people’s quality of life.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference45 articles.

1. Fully Automatic Knee Osteoarthritis Severity Grading Using Deep Neural Networks with a Novel Ordinal Loss;Comput. Med. Imaging Graph.,2019

2. Are There Harmful Effects of Preoperative Mild Lateral or Patellofemoral Degeneration on the Outcomes of Open Wedge High Tibial Osteotomy for Medial Compartmental Osteoarthritis?;Orthop. J. Sport. Med.,2020

3. Tiulpin, A., and Saarakkala, S. (2020). Automatic Grading of Individual Knee Osteoarthritis Features in Plain Radiographs Using Deep Convolutional Neural Networks. Diagnostics, 10.

4. Prevalence and Treatment of Hip and Knee Osteoarthritis in People Aged 60 Years or Older in Germany: An Analysis Based on Health Insurance Claims Data;Clin. Interv. Aging,2018

5. An Automatic Knee Osteoarthritis Diagnosis Method Based on Deep Learning: Data from the Osteoarthritis Initiative;J. Healthc. Eng.,2021

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3