Diagnosing the Severity of Knee Osteoarthritis Using Regression Scores From Artificial Intelligence Convolution Neural Networks

Author:

Fei Michael,Lu Sarah,Chung Jun Ho,Hassan Sherif,Elsissy Joseph,Schneiderman Brian A.

Abstract

Background: This study focused on using deep learning neural networks to classify the severity of osteoarthritis in the knee. A continuous regression score of osteoarthritis severity has yet to be explored using artificial intelligence machine learning, which could offer a more nuanced assessment of osteoarthritis. Materials and Methods: This study used 8260 radiographic images from The Osteoarthritis Initiative to develop and assess four neural network models (VGG16, EfficientNetV2 small, ResNet34, and DenseNet196). Each model generated a regressor score of the osteoarthritis severity based on Kellgren-Lawrence grading scale criteria. Primary performance outcomes assessed were area under the curve (AUC), accuracy, and mean absolute error (MAE) for each model. Secondary outcomes evaluated were precision, recall, and F-1 score. Results: The EfficientNet model architecture yielded the strongest AUC (0.83), accuracy (71%), and MAE (0.42) compared with VGG16 (AUC: 0.74; accuracy: 57%; MAE: 0.54), ResNet34 (AUC: 0.76; accuracy: 60%; MAE: 0.53), and DenseNet196 (AUC: 0.78; accuracy: 62%; MAE: 0.49). Conclusion: Convolutional neural networks offer an automated and accurate way to quickly assess and diagnose knee radiographs for osteoarthritis. The regression score models evaluated in this study demonstrated superior AUC, accuracy, and MAE compared with standard convolutional neural network models. The EfficientNet model exhibited the best overall performance, including the highest AUC (0.83) noted in the literature. The artificial intelligence-generated regressor exhibits a finer progression of knee osteoarthritis by quantifying severity of various hallmark features. Potential applications for this technology include its use as a screening tool in determining patient suitability for orthopedic referral. [ Orthopedics . 202x;4x(x):xx–xx.]

Publisher

SLACK, Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3