Automatic Diabetic Foot Ulcer Recognition Using Multi-Level Thermographic Image Data

Author:

Khosa Ikramullah1ORCID,Raza Awais1,Anjum Mohd2,Ahmad Waseem3,Shahab Sana4ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan

2. Department of Computer Engineering, Aligarh Muslim University, Aligarh 202002, India

3. Department of Computer Science and Engineering, Meerut Institute of Engineering and Technology, Meerut 250005, India

4. Department of Business Administration, College of Business Administration, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

Lower extremity diabetic foot ulcers (DFUs) are a severe consequence of diabetes mellitus (DM). It has been estimated that people with diabetes have a 15% to 25% lifetime risk of acquiring DFUs which leads to the risk of lower limb amputations up to 85% due to poor diagnosis and treatment. Diabetic foot develops planter ulcers where thermography is used to detect the changes in the planter temperature. In this study, publicly available thermographic image data including both control group and diabetic group patients are used. Thermograms at image level as well as patch level are utilized for DFU detection. For DFU recognition, several machine-learning-based classification approaches are employed with hand-crafted features. Moreover, a couple of convolutional neural network models including ResNet50 and DenseNet121 are evaluated for DFU recognition. Finally, a CNN-based custom-developed model is proposed for the recognition task. The results are produced using image-level data, patch-level data, and image–patch combination data. The proposed CNN-based model outperformed the utilized models as well as the state-of-the-art models in terms of the AUC and accuracy. Moreover, the recognition accuracy for both the machine-learning and deep-learning approaches was higher for the image-level thermogram data in comparison to the patch-level or combination of image–patch thermograms.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3