Design and Numerical Analysis of Double Encoder-Swinnets-A Novel Swin Transformers-Based Diabetic Foot

Author:

Maheswari D.1,Kayalvizhi M.2

Affiliation:

1. Department of Electronics and Communication Engineering, Agni College of Technology, Chennai, 600130 Tamilnadu, India

2. Department of Biomedical Engineering, Chennai Institute of Technology, Chennai, 600069 Tamilnadu, India

Abstract

Thermography is crucial for early diabetic foot (DF) diagnosis and accurate segmentation of ulcer-prone areas. However, existing segmentation methods fall short due to image complexities and ambiguities. Recent advancements in deep learning show promise, but they rely on color images, not thermal ones. This research introduces an automated, robust, and precise diabetic foot segmentation approach using a deep neural network based on U-Nets and modified Swin transformers. The unique attention mechanism known as the axial attention parallel module (A2PM) is combined with the Unet-based Swin transformer model for an efficient segmentation process to extract local foreground features. The combination of the modified Swin Transformer’s multi-headed attention networks enhances thermal color information integration, resulting in superior segmentation accuracy. In addition, the proposed model makes use of the stacking dilated convolution (SDC) approach to protect the deep features that could be lost in the up-sampling modules. The feature maps are immediately integrated at the encoder and decoder stages using the shortcut connection (ResConv route) based on the residually connected convolutional layer. Furthermore, this ResConv path is added serially before the encoder and decoder characteristics are combined. The model is tested on 124 diabetic and 100 healthy subjects, evaluating its performance with metrics like DICE, IoU, precision, and recall. The suggested approach outperforms current techniques in an experimental evaluation, achieving 99.5% DICE, 98.9% IoU, 99.33% precision, and 99.56% recall for diabetic thermal ulcer image segmentation.

Publisher

American Scientific Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3