Towards Automated Eye Diagnosis: An Improved Retinal Vessel Segmentation Framework Using Ensemble Block Matching 3D Filter

Author:

Naveed KhuramORCID,Abdullah Faizan,Madni Hussain Ahmad,Khan Mohammad A.U.,Khan Tariq M.ORCID,Naqvi Syed Saud

Abstract

Automated detection of vision threatening eye disease based on high resolution retinal fundus images requires accurate segmentation of the blood vessels. In this regard, detection and segmentation of finer vessels, which are obscured by a considerable degree of noise and poor illumination, is particularly challenging. These noises include (systematic) additive noise and multiplicative (speckle) noise, which arise due to various practical limitations of the fundus imaging systems. To address this inherent issue, we present an efficient unsupervised vessel segmentation strategy as a step towards accurate classification of eye diseases from the noisy fundus images. To that end, an ensemble block matching 3D (BM3D) speckle filter is proposed for removal of unwanted noise leading to improved detection. The BM3D-speckle filter, despite its ability to recover finer details (i.e., vessels in fundus images), yields a pattern of checkerboard artifacts in the aftermath of multiplicative (speckle) noise removal. These artifacts are generally ignored in the case of satellite images; however, in the case of fundus images, these artifacts have a degenerating effect on the segmentation or detection of fine vessels. To counter that, an ensemble of BM3D-speckle filter is proposed to suppress these artifacts while further sharpening the recovered vessels. This is subsequently used to devise an improved unsupervised segmentation strategy that can detect fine vessels even in the presence of dominant noise and yields an overall much improved accuracy. Testing was carried out on three publicly available databases namely Structured Analysis of the Retina (STARE), Digital Retinal Images for Vessel Extraction (DRIVE) and CHASE_DB1. We have achieved a sensitivity of 82.88, 81.41 and 82.03 on DRIVE, SATARE, and CHASE_DB1, respectively. The accuracy is also boosted to 95.41, 95.70 and 95.61 on DRIVE, SATARE, and CHASE_DB1, respectively. The performance of the proposed methods on images with pathologies was observed to be more convincing than the performance of similar state-of-the-art methods.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Statistical Analysis of Features for Detecting Leukemia;International Journal of Online and Biomedical Engineering (iJOE);2024-07-16

2. BranchFusionNet: An energy-efficient lightweight framework for superior retinal vessel segmentation;Peer-to-Peer Networking and Applications;2024-06-20

3. 3D orientation field transform;Pattern Analysis and Applications;2024-02-28

4. A Novel Retinal Image Contrast Enhancement – Fuzzy-Based Method;2023 24th International Arab Conference on Information Technology (ACIT);2023-12-06

5. Feature Enhancer Segmentation Network (FES-Net)for Vessel Segmentation;2023 International Conference on Digital Image Computing: Techniques and Applications (DICTA);2023-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3