Statistical Analysis of Features for Detecting Leukemia

Author:

Khobragade Vandana S.,Nirmal Jagannath H.ORCID,Hakim AayeshaORCID

Abstract

In this age of digital microscopy, image processing, statistical analysis, categorization, and systems for decision-making have become essential tools for medical diagnostics research. By visualizing and analyzing images, clinicians can identify anomalies in intracellular structure. Leukemia is a cancerous condition marked by an unregulated increase in aberrant white blood cells (WBCs). Recognizing acute leukemia tumor cells in blood smear images (BSI) is a challenging assignment. Image segmentation is regarded as the most significant step in the automated identification of this disease. The innovative concavity-based segmentation algorithm is employed in this study to segment WBC in sub-images from the ALLIDB2 database. The concave endpoints and elliptical features are used in the segmentation step of convex-shaped cell images. The procedure involves the extraction of contour evidence, which detects the visible section of each object, and contour estimation, which corresponds to the final object’s contours. Following the identification of the cells and their internal structure by concavity-based segmentation, the cells are categorized based on their morphological and statistical features. The method was evaluated using a public dataset meant to test classification and segmentation approaches. The statistical tool SPSS is used to independently check the significance of derived features. For classification, significant features are passed into machine learning techniques such as support vector machines (SVM), k-nearest neighbor (KNN), neural networks (NN), decision trees (DT), and Nave Bayes (NB). With an AUC of 98.9% and a total accuracy of 95%, the neural network model performed better. We advocate using the neural network model to identify acute leukemia cells based on its accuracy.

Publisher

International Association of Online Engineering (IAOE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3