A Potential Application of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Combined with Photodynamic Diagnosis for the Detection of Bladder Carcinoma in Situ: Toward the Future ‘MRI-PDD Fusion TURBT’

Author:

Miyake MakitoORCID,Maesaka Fumisato,Marugami NagaakiORCID,Miyamoto Tatsuki,Nakai Yasushi,Ohnishi Sayuri,Gotoh Daisuke,Owari Takuya,Hori Shunta,Morizawa YosukeORCID,Itami Yoshitaka,Inoue Takeshi,Anai Satoshi,Torimoto Kazumasa,Fujii TomomiORCID,Shimada Keiji,Tanaka Nobumichi,Fujimoto Kiyohide

Abstract

The detection of carcinoma in situ (CIS) is essential for the management of high-risk non-muscle invasive bladder cancers. Here, we focused on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) combined with photodynamic diagnosis (PDD) for the detection of CIS. A total of 45 patients undergoing pre-surgical DCE-MRI and PDD-assisted endoscopic surgery accompanied by biopsies of the eight segmentations were analyzed. Immunohistochemical analysis of the biopsies revealed hypervascularity of CIS lesions, a cause of strong submucosal contrast-enhancement. It was found that 56 (16.2%) of 344 biopsies had pathologically proven CIS. In the DCE-MRI, the overall sensitivity and specificity for detecting CIS were 48.2% and 81.9%, respectively. We set out two different combinations of PDD and DCE-MRI for detecting CIS. Combination 1 was positive when either the PDD or DCE-MRI were test-positive. Combination 2 was positive only when both PDD and DCE-MRI were test-positive. The overall sensitivity of combinations 1 and 2 were 75.0% and 37.5%, respectively (McNemar test, vs PDD alone; p = 0.041 and p < 0.001, respectively). However, the specificity was 74.0% and 91.7%, respectively (vs PDD alone; both p < 0.001). Our future goal is to establish ‘MRI-PDD fusion transurethral resction of the bladder tumor (TURBT), which could be an effective therapeutic and diagnostic approach in the clinical management of high-risk disease.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3