Impact of Limestone Surface Impurities on Quicklime Product Quality

Author:

Eriksson Matias123ORCID,Sandström Karin124ORCID,Carlborg Markus12ORCID,Broström Markus12ORCID

Affiliation:

1. Centre for Sustainable Cement and Quicklime Production, Department of Applied Physics and Electronics, Umeå University, SE-90187 Umeå, Sweden

2. Thermochemical Energy Conversion Laboratory, Department of Applied Physics and Electronics, Umeå University, SE-90187 Umeå, Sweden

3. The Swedish Mineral Processing Research Association—MinFo, Marieviksgatan 25, SE-10044 Stockholm, Sweden

4. Industrial Doctoral School for Research and Innovation, Umeå University, SE-90187 Umeå, Sweden

Abstract

Quicklime is produced through the thermal processing of limestone in industrial kilns. During quarry operations, fine particulate quarry dust adheres to limestone lump surfaces, increasing the bulk concentration of impurities in limestone products. During thermal processing in a kiln, impurities such as Si, Mg, Al, Fe, and Mn react with Ca, reducing quicklime product quality. Which reactant phases are formed, and the extent to which these result in a reduction in quality, has not been extensively investigated. The present study investigated as-received and manually washed limestone product samples from two operational quarries using elemental compositions and a developed predictive multi-component chemical equilibrium model to obtain global phase diagrams for 1000–1500 °C, corresponding to the high-temperature zone of a lime kiln, identifying phases expected to be formed in quicklime during thermal processing. The results suggest that impurities found on the surface of the lime kiln limestone feed reduce the main quality parameter of the quicklime products, i.e., calcium oxide, CaO (s), content by 0.8–1.5 wt.% for the investigated materials. The results also show that, in addition to the effect of impurities, the quantity of CaO (s) varies greatly with temperature. More impurities result in more variation and a greater need for accurate temperature control of the kiln, where keeping the temperature below approximately 1300 °C, that of Hatrurite formation, is necessary for a product with higher CaO (s).

Funder

Swedish Energy Agency

Industrial Doctoral School for Research and Innovation

The Ellen, Walter and Lennart Hesselman Foundation

VINNOVA

Publisher

MDPI AG

Reference55 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3