Analysis of the Ecological Footprint from the Extraction and Processing of Materials in the LCA Phase of Lithium-Ion Batteries

Author:

Siwiec Dominika1ORCID,Frącz Wiesław2ORCID,Pacana Andrzej1ORCID,Janowski Grzegorz2ORCID,Bąk Łukasz2ORCID

Affiliation:

1. Department of Manufacturing Processes and Production Engineering, Rzeszow University of Technology, Powstancow Warszawy 8, 35-959 Rzeszow, Poland

2. Department of Materials Forming and Processing, Rzeszow University of Technology, Powstancow Warszawy 8, 35-959 Rzeszow, Poland

Abstract

The development of batteries used in electric vehicles towards sustainable development poses challenges to designers and manufacturers. Although there has been research on the analysis of the environmental impact of batteries during their life cycle (LCA), there is still a lack of comparative analyses focusing on the first phase, i.e., the extraction and processing of materials. Therefore, the purpose of this research was to perform a detailed comparative analysis of popular electric vehicle batteries. The research method was based on the analysis of environmental burdens regarding the ecological footprint of the extraction and processing of materials in the life cycle of batteries for electric vehicles. Popular batteries were analyzed: lithium-ion (Li-Ion), lithium iron phosphate (LiFePO4), and three-component lithium nickel cobalt manganese (NCM). The ecological footprint criteria were carbon dioxide emissions, land use (including modernization and land development) and nuclear energy emissions. This research was based on data from the GREET model and data from the Ecoinvent database in the OpenLCA programme. The results of the analysis showed that considering the environmental loads for the ecological footprint, the most advantageous from the environmental point of view in the extraction and processing of materials turned out to be a lithium iron phosphate battery. At the same time, key environmental loads occurring in the first phase of the LCA of these batteries were identified, e.g., the production of electricity using hard coal, the production of quicklime, the enrichment of phosphate rocks (wet), the production of phosphoric acid, and the uranium mine operation process. To reduce these environmental burdens, improvement actions are proposed, resulting from a synthesized review of the literature. The results of the analysis may be useful in the design stages of new batteries for electric vehicles and may constitute the basis for undertaking pro-environmental improvement actions toward the sustainable development of batteries already present on the market.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3