Multifunctional Chitosan/Xylan-Coated Magnetite Nanoparticles for the Simultaneous Adsorption of the Emerging Contaminants Pb(II), Salicylic Acid, and Congo Red Dye

Author:

Farghal Hebatullah H.1ORCID,Nebsen Marianne2,El-Sayed Mayyada M. H.1ORCID

Affiliation:

1. Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, Cairo 11835, Egypt

2. Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo 11562, Egypt

Abstract

In this work, we develop chitosan/xylan-coated magnetite (CsXM) nanoparticles as eco-friendly efficient adsorbents for the facile removal of contaminants from water. Characterization of CsXM using Fourier Transform Infra-Red (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Transmission Electron Microscopy (TEM), Zeta potential measurements, and Brunauer-Emmet-Teller (BET) analysis, confirmed the successful preparation of a chitosan/xylan complex coated over magnetite, which is characterized by being mesoporous, thermally stable and of neutral charge. Three contaminants, Pb(II), salicylic acid (SA), and congo red (CR), were chosen as representative pollutants from three major classes of contaminants of emerging concern: heavy metals, pharmaceuticals, and azo dyes. Pb(II), SA, and CR at initial concentrations of 50 ppm were removed by 64.49, 62.90, and 70.35%, respectively, on applying 6 g/L of CsXM. The contaminants were successfully removed in ternary systems, with Pb (II) and SA being more competitive in their adsorption than CR. Adsorption followed the Freundlich isotherm model and the pseudo-second order kinetic model, while the binding was suggested to occur mainly via chemical chelation for Pb(II) and physical interaction for SA and CR, which demonstrates the multifunctional potential of the nanoparticles to capture different contaminants regardless of their charge.

Funder

The American University in Cairo

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3