Polypyrrole- and Polyaniline-Coated Cotton Fabrics as Efficient Adsorbents for the Pharmaceutical Water Contaminants Diclofenac and Salicylic Acid

Author:

Farghal Hebatullah H.1ORCID,Tawakey Samar H.2,Amer Wael A.23ORCID,Ayad Mohamad M.24,Madkour Tarek M.1ORCID,El-Sayed Mayyada M. H.1ORCID

Affiliation:

1. Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo, P.O. Box 74, Cairo 11835, Egypt

2. Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt

3. Department of Chemistry, College of Science, University of Bahrain, Sakhir 32038, Bahrain

4. Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria 21934, Egypt

Abstract

The emerging pharmaceutical contaminants diclofenac (DCF) and salicylic acid (SA) pose potential hazards to humans and living organisms due to their persistence in water environments. In this work, the conductive polymers polypyrrole (PPY) and polyaniline (PANI) were successfully coated on cotton fabrics, as confirmed by FTIR and SEM measurements. The coated fabrics efficiently removed DCF at pH 5.3 and SA at pH 4, with removal efficiencies that exceeded 90% and 70%, respectively. Adsorption was rapid for most of the tested contaminant–fabric systems and reached equilibrium within 20–30 min. The best adsorption performance for both contaminants was shown on the PPY-coated fabrics, which yielded adsorption capacities of about 65 and 21 mg/g for DCF and SA, respectively. This could be explained by molecular modeling simulations, which mostly estimated higher total cohesive energy densities for adsorption on the PPY-coated fabrics than on the PANI-coated ones. The adsorption mechanism involved both coulombic electrostatic attractions and non-coulombic van der Waals and π-π stacking. The fabrics could be reused for three adsorption–desorption cycles. Immobilization of the conductive polymers on cotton fabrics provides a facile method for their handling and collection during adsorption and regeneration cycles while maintaining their multi-functionality in adsorbing different contaminants.

Funder

American University in Cairo

USAID ASHA

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3