Study on the Influence of Air Tightness of the Building Envelope on Indoor Particle Concentration

Author:

Yu Liang,Kang Ning,Wang Weikuan,Guo Huiyu,Ji Jia

Abstract

In order to grasp the building palisade structure tightness of indoor particulate matter mass concentration based on the particle penetration mechanism and settlement characteristics, this article analyzes the measurements of two different types of building air tightness of a Shenyang university office building in terms of indoor and outdoor particulate matter mass concentration levels from 2016-1-09 to 1-22, 2016-7-18 to 8-03, and 2017-2-28 to 3-13. The building outside the closed window that had no indoor source condition, the indoor office building and outdoor particle mass concentration, and the aperture size and shape of the envelope were analyzed to carry on the numerical simulation research by Fluent software, which was then analyzed; the results reveal that the measuring point of the I/O ratio is less than point B of the I/O ratio, measurement points of A linear regression fitting degree is lower than the fit of the measuring point B, and the causes for the measuring point A tightness (level 8) is superior to the measuring point B (level 4). When the gap height h is greater than 0.5 mm, the penetration rate of particles within the range of 0.25–2.5 μm particle size is close to 1. In different gap depths, the penetration rate of particles within the range of 0.1–1 μm particle size was close to 1. In diverse pressure difference, the 0.25–2.5 μm particles within the scope of penetration rate P is close to 1, the gap on both sides of the differential value ΔP; the greater the particle, the higher penetration rate. The larger the right-angle number of gap n, the lower the penetration rate of particles. The L-shaped gap and U-shaped gap have significantly better barrier effects in larger and smaller particles than the rectangular gap. The research results in this paper can help people understand and effectively control the influence of outdoor particles on the indoor air quality and provide reference data for the prediction of indoor particle mass concentration in buildings, which has theoretical basis and practical significance.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3