The Influence of Outdoor Particulate Matter PM2.5 on Indoor Air Quality: The Implementation of a New Assessment Method

Author:

Bekierski DominikORCID,Kostyrko Krystyna BarbaraORCID

Abstract

Epidemiological research has shown that there is a positive correlation between the incidence of disease and mortality in humans and the mass concentration of particulate matter. An average 1 g of suspended dust emitted in a room results in the same exposure as 1 kg emitted to the outside air. In this study, the authors described the state of knowledge on dust pollution inside and outside buildings (I/O ratios), and methods of testing the PM infiltration process parameters. According to the law of indoor–outdoor particle mass balance and the physical basis of aerosol penetration theory, a relatively simple but new method for estimating the penetration factor P was tested. On the basis of the curve of dynamic changes of internal dust concentration in the process of particle concentration decay and next of the followed curve of dynamic rebound of particle concentration, authors measured penetration factor of ambient PM2.5 through building envelope. Authors modification of the method is to be used for determining the value of the particle deposition rate k not from the course of the characteristics in the transient state (the so-called particle concentration decay curves) but from the concentration rebound course, stimulated by natural particle infiltration process. Recognition measurements of the mass concentration of suspended PM2.5 and PM10 particles inside the rooms were carried out. In this study, the choice of the prediction particle penetration factor P calculation method was supported by the exemplary calculation of the p value for a room polluted by PM2.5. The preliminary results of the penetration factors determined by this method P = 0.61 are consistent with the P factor values from the literature obtained so far for this dimensional group of dusts.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3