Cr-Zn/Ni-Containing Nanocomposites as Effective Magnetically Recoverable Catalysts for CO2 Hydrogenation to Methanol: The Role of Metal Doping and Polymer Co-Support

Author:

Sorokina Svetlana A.,Kuchkina Nina V.ORCID,Grigoriev Maxim E.,Bykov Alexey V.,Ratnikov Andrey K.,Doluda Valentin Yu.,Sulman Mikhail G.,Shifrina Zinaida B.

Abstract

CO2 hydrogenation to methanol is an important process that could solve the problem of emitted CO2 that contributes to environmental concern. Here we developed Cr-, Cr-Zn-, and Cr-Ni-containing nanocomposites based on a solid support (SiO2 or Al2O3) with embedded magnetic nanoparticles (NPs) and covered by a cross-linked pyridylphenylene polymer layer. The decomposition of Cr, Zn, and Ni precursors in the presence of supports containing magnetic oxide led to formation of amorphous metal oxides evenly distributed over the support-polymer space, together with the partial diffusion of metal species into magnetic NPs. We demonstrated the catalytic activity of Cr2O3 in the hydrogenation reaction of CO2 to methanol, which was further increased by 50% and 204% by incorporation of Ni and Zn species, respectively. The fine intermixing of metal species ensures an enhanced methanol productivity. Careful adjustment of constituent elements, e.g., catalytic metal, type of support, presence of magnetic NPs, and deposition of hydrophobic polymer layer contributes to the synergetic promotional effect required for activation of CO2 molecules as well. The results of catalytic recycle experiments revealed excellent stability of the catalysts due to protective role of hydrophobic polymer.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference76 articles.

1. Dudley, B. (2019). BP Statistical Review of World Energy, BP Statistical Review.

2. Global Carbon Budget 2021;Friedlingstein;Earth Syst. Sci. Data,2022

3. Catalysis for the Valorization of Exhaust Carbon: From CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2;Aresta;Chem. Rev.,2014

4. CO2 hydrogenation to high-value products via heterogeneous catalysis;Ye;Nat. Commun.,2019

5. CO2 hydrogenation from a process synthesis perspective: Setting up process targets;Sempuga;J. CO2 Util.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3