Research Progress on Application in Energy Conversion of Silicon Carbide-Based Catalyst Carriers

Author:

Teng YingyueORCID,Liu Dingze,Li Qiang,Bai Xue,Song Yinmin

Abstract

In modern industrial production, heterogeneous catalysts play an important role. A catalyst carrier, as a constituent of heterogeneous catalysts, is employed for supporting and loading active components. The catalyst carrier has a considerable impact on the overall acting performance of the catalysts in actual production. Therefore, a catalyst carrier should have some necessary properties such as a high specific surface area, excellent mechanical strength and wear resistance, and better thermal stability. Among the candidate materials, silicon carbide (SiC) has excellent physical and chemical properties due to its special crystal structure; these properties include outstanding thermal conductivity and remarkable mechanical strength and chemical stability. Therefore, SiC materials with a high specific surface area basically meet the requirements of catalyst carriers. Accordingly, SiC has broad application prospects in the field of catalysis and is an ideal material for preparing catalyst carriers. In the present study, we reviewed the preparation methods and the variation in the raw materials used for preparing SiC-based catalyst carriers with high specific surface areas, in particular the research progress on the application of SiC-based catalyst carriers in the field of energy-conversion in recent years. The in-depth analysis indicated that the construction of SiC with a special structure, large-scale synthesis of SiC by utilizing waste materials, low-temperature synthesis of SiC, and exploring the interaction between SiC supports and active phases are the key strategies for future industrial development; these will have far-reaching significance in enhancing catalytic efficiency, reutilization of resources, ecological environmental protection, energy savings, and reductions in energy consumption.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference129 articles.

1. Acheson, E.G. (1893). Production of Artificial Crystalline Carbonaceous Materials. (US0492767), US Patent.

2. Silicon Carbide as a Novel Support for Heterogeneous Catalysis;Wang;Prog. Chem.,2014

3. Porous Silicon Carbide (SiC): A Chance for Improving Catalysts or Just Another Active-Phase Carrier?;Tuci;Chem. Rev.,2021

4. Silicon carbide in catalysis: From inert bed filler to catalytic support and multifunctional material;Kulkarni;Catal. Rev. Sci. Eng.,2022

5. Recent progress in synthesis, properties and potential applications of SiC nanomaterials;Wu;Prog. Mater. Sci.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3