The Preparation of Photocatalytic Porous Magnesium Oxychloride Cement-Based Materials and Its De-NOx Performance

Author:

Zhu Lide123,Yuan Liran12,Xu Xingang12,Chen Jing4,Yang Lu1

Affiliation:

1. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China

2. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

3. Technical Supervision and Research Center of the Building Materials Industry, Beijing 100024, China

4. Institute of Technical Information for Building Materials Industry, Beijing 100024, China

Abstract

Porous magnesium oxychloride cement (PMOC) has a high specific surface area formed by interlocking whiskers, which can be used as a promising photocatalyst substrate for the photocatalytic removal of atmospheric pollutants. In this paper, magnesium oxychloride cement (MOC) was used as matrix and TiO2 as catalyst to prepare MOC blocks. Plant-based protein was used as a foaming agent to form the layered porous structure suitable for supporting TiO2 particles, which effectively increased the surface area of light radiation and TiO2 adhesion area in photocatalytic porous magnesium oxychloride cement (PPMOC). It was found that the addition of the foaming agent can increase the adsorption capacity of MOC to TiO2. The vacuum-immersion loading method can effectively support TiO2 on the surface of PMOC. The photocatalytic performance of PPMOC can be improved by multiple loading, while higher porosity of PMOC would reduce the loading surface of matrix to TiO2 particles, which might decrease the photocatalytic efficiency. As can be observed in PPMOC specimens, when the porosity of PPMOC is less than 60%, increasing the porosity can improve the photocatalytic efficiency, while when the porosity is higher than 60%, increasing the porosity decreased the photocatalytic efficiency due to the reduction of the loading surface. The excellent nitrate selectivity of PPMOC also shows good application potential in the field of catalytic degradation of nitrogen oxides.

Funder

State key Laboratory of solid waste Resource Utilization and Energy Saving Building Materials Open Fund

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3