Abstract
In this study, new organic-inorganic g-C3N4/CoAl-LDH nanocomposites were prepared and introduced to fabricate photocatalytic cement mortars by internal mixing, coating, and spraying. The photocatalytic depollution of both g-C3N4/CoAl-LDH and cement mortars was assessed by NOx degradation reaction under UV-visible light irradiation. The study results suggested that the degradation efficiency of g-C3N4/CoAl-LDH nanocomposites improved with an increase in g-C3N4 content. The g-C3N4/CoAl-LDH1.5 nanocomposite displayed the highest NOx degradation capacity, which was about 1.23 and 3.21 times that of pure g-C3N4 and CoAl-LDH, respectively. The photocatalytic cement mortars which were all fabricated using different approaches could effectively degrade the target pollutants and exhibited significant compatibility between g-C3N4/CoAl-LDH and cementitious substrate. Among them, the coated mortars showed strong resistance to laboratory-simulated wearing and abrasion with a small decrease in degradation rate.
Funder
Natural Science Foundation of Fujian Province
National Natural Science Foundation of China
Fuzhou Science and Technology Bureau
Minjiang Scholar program of Fujian province, China
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献