Biosynthesis of Furfurylamines in Batch and Continuous Flow by Immobilized Amine Transaminases

Author:

Heinks Tobias1ORCID,Merz Luisa M.23ORCID,Liedtke Jan1,Höhne Matthias4ORCID,van Langen Luuk M.3,Bornscheuer Uwe T.5ORCID,Fischer von Mollard Gabriele1ORCID,Berglund Per2ORCID

Affiliation:

1. Faculty of Chemistry, Biochemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany

2. Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden

3. ViaZym B.V., Molengraaffsingel 10, 2629JD Delft, The Netherlands

4. Biocatalysis/Biological Chemistry, Technical University Berlin, Müller-Breslau-Str.10, 10623 Berlin, Germany

5. Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany

Abstract

Building blocks with amine functionality are crucial in the chemical industry. Biocatalytic syntheses and chemicals derived from renewable resources are increasingly desired to achieve sustainable production of these amines. As a result, renewable materials such as furfurals, especially furfurylamines like 5-(hydroxymethyl)furfurylamine (HMFA) and 2,5-di(aminomethyl)furan (DAF), are gaining increasing attention. In this study, we identified four different amine transaminases (ATAs) that catalyze the reductive amination of 5-(hydroxymethyl)furfural (HMF) and 2,5-diformylfuran (DFF). We successfully immobilized these ATAs on glutaraldehyde-functionalized amine beads using multiple binding and on amine beads by site-selective binding of the unique Cα-formylglycine within an aldehyde tag. All immobilized ATAs were efficiently reused in five repetitive cycles of reductive amination of HMF with alanine as co-substrate, while the ATA from Silicibacter pomeroyi (ATA-Spo) also exhibited high stability for reuse when isopropylamine was used as an amine donor. Additionally, immobilized ATA-Spo yielded high conversion in the batch syntheses of HMFA and DAF using alanine (87% and 87%, respectively) or isopropylamine (99% and 98%, respectively) as amine donors. We further demonstrated that ATA-Spo was effective for the reductive amination of HMF with alanine or isopropylamine in continuous-flow catalysis with high conversion up to 12 days (48% and 41%, respectively).

Funder

European Union’s Horizon 2020 research

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference110 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3