Mitigating Co Metal Particle Agglomeration and Enhancing ORR Catalytic Activity through Nitrogen-Enriched Porous Carbon Derived from Biomass

Author:

Wu Yanling1ORCID,Hou Qinggao1ORCID,Li Fangzhou1,Sang Yuanhua2ORCID,Hao Mengyang1,Tang Xi1,Qiu Fangyuan1,Zhang Haijun3

Affiliation:

1. Jinan Key Laboratory of New Energy & New Materials for Intelligent Transportation, School of Civil Engineering, Shandong Jiaotong University, Jinan 250357, China

2. State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China

3. Department of Vascular & Intervention, Tenth Peoples’ Hospital of Tongji University, Shanghai 200072, China

Abstract

Biomass-derived porous carbon has gained significant attention as a cost-effective and sustainable material in non-noble metal carbon-based electrocatalysts for the oxygen reduction reaction (ORR). However, during the preparation of transition metal catalysts based on biomass-derived porous carbon, the agglomeration of transition metal atoms often occurs, leading to a notable decline in catalytic activity. In this study, we present a straightforward synthetic approach for the preparation of nitrogen-enriched soybean-derived porous carbon (Co@SP-C-a) as an electrocatalyst for the ORR. To achieve this, we employed a two-step method. In the first step, a chemical activator (KCl) was utilized to enhance the porosity of the self-doped nitrogen biomass carbon material. In the second step, a constant pressure drop funnel technique was employed to uniformly disperse bimetal cobalt/zinc-based zeolitic imidazolium frameworks (ZIF-L and ZIF-67) containing different metal ions (Zn2+ and Co2+) into the activated biomass carbon material. Subsequent high-temperature calcination of the ZIF-L and ZIF-67@SP-C-a composite precursor yielded the Co@SP-C-a catalyst. The obtained catalyst exhibited remarkable ORR activity in an alkaline solution (Eonset = 0.89 V, E1/2 = 0.83 V, JL = −6.13 mA·cm−2) and exceptional long-term stability. This study presents an effective strategy to prevent the agglomeration of metal nanoparticles when integrating them with biomass-based carbon materials, thus leading to enhanced catalytic performance.

Funder

Innovation Training Foundation for College Student of Shandong Jiaotong University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3