Durability of Commercial Catalysts within Relevant Stress Testing Protocols

Author:

Moguchikh Elizaveta1,Paperzh Kirill1ORCID,Pankov Ilya2ORCID,Belenov Sergey1ORCID,Alekseenko Anastasia1ORCID

Affiliation:

1. Faculty of Chemistry, Southern Federal University, 7 Zorge St., 344090 Rostov-on-Don, Russia

2. Research Institute of Physical Organic Chemistry, Southern Federal University, 194/2 Stachki St., 344090 Rostov-on-Don, Russia

Abstract

In this study, we analyzed the durability of the commercial Pt/C catalysts with platinum loading of 20% and 40% using two different accelerated durability tests, i.e., using Ar or O2 when bubbling the electrolyte during testing. The structural analysis of the changes in the morphology of the catalysts was performed by XRD and TEM as well as the assessment of the degradation degree of the catalysts using the values of the specific surface area and ORR activity, both, before and after the stress testing. Regardless of the stress testing conditions, the JM20 material was established to degrade ESA and the catalytic activity to a greater extent than JM40, which may be due to the structural and morphological features of the catalysts and their evolution during the stress testing under various conditions. The JM20 material has been reported to exhibit a greater degree of degradation when bubbling the electrolyte with oxygen during the stress testing compared to argon, which may be explained by a different mechanism of degradation for the catalyst with the predominant oxidation of the carbon support, leading to a different nature of the distribution of the platinum nanoparticles over the surface of the carbon support, according to results that have estimated the number of nanoparticle intersections.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3