New Approach to Synthesizing Cathode PtCo/C Catalysts for Low-Temperature Fuel Cells

Author:

Belenov Sergey12ORCID,Mauer Dmitriy12ORCID,Moguchikh Elizabeth12,Gavrilova Anna1,Nevelskaya Alina13,Beskopylny Egor12,Pankov Ilya4ORCID,Nikulin Aleksey3,Alekseenko Anastasia12ORCID

Affiliation:

1. Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia

2. Prometheus R&D LLC, 4G/36 Zhmaylova St., Rostov-on-Don 344091, Russia

3. Federal Research Center “The Southern Scientific Center of the Russian Academy of Sciences” (SSC RAS), Federal State Budgetary Institution of Science, 41 Chekhova St., Rostov-on-Don 344006, Russia

4. Research Institute of Physical Organic Chemistry, Southern Federal University, 194/2 Stachki St., Rostov-on-Don 344090, Russia

Abstract

The presented study is concerned with a new multi-step method to synthesize PtCo/C materials based on composite CoxOy/C that combines the advantages of different liquid-phase synthesis methods. Based on the results of studying the materials at each stage of synthesis with the TG, XRD, TEM, SEI, TXRF, CV and LSV methods, a detailed overview of the sequential changes in catalyst composition and structure at each stage of the synthesis is presented. The PtCo/C catalyst synthesized with the multi-step method is characterized by a uniform distribution of bimetallic nanoparticles of about 3 nm in size over the surface of the support, which result in its high ESA and ORR activity. The activity study for the synthesized PtCo/C catalyst in an MEA showed better current–voltage characteristics and a higher maximum specific power compared with an MEA based on a commercial Pt/C catalyst. Therefore, the results of the presented study demonstrate high prospects for the developed approach to the multi-step synthesis of PtM/C catalysts, which may enhance the characteristics of proton-exchange membrane fuel cells (PEMFCs).

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3