Effect of Pd-Doping Concentrations on the Photocatalytic, Photoelectrochemical, and Photoantibacterial Properties of CeO2

Author:

Matussin Shaidatul Najihah,Khan FazlurrahmanORCID,Harunsani Mohammad HilniORCID,Kim Young-MogORCID,Khan Mohammad MansoobORCID

Abstract

Cerium oxide (CeO2) can exhibit good photocatalytic and photoantibacterial activities. However, its light-harvesting property is rather limited due to its large band gap. In order to boost these properties, doping with metal ions can improve light absorption and charge mobility. In this report, CeO2 and palladium−doped CeO2 (Pd−CeO2) NPs were synthesized via the microwave-assisted synthesis method. The structural, optical, and morphological studies of CeO2 and Pd−CeO2 NPs were carried out using various techniques. Mixed phases of CeO2/Ce2O3 were observed in pure CeO2 (S−CeO2) and Pd−CeO2. However, the Ce2O3 phase gradually disappeared upon doping with a higher percentage of Pd. Almost spherical particles were observed with average sizes between 6 and 13 nm. It was found that the incorporation of Pd reduced the particle size. Moreover, band gap energies of S−CeO2 and Pd−CeO2 NPs were reduced from 2.56 to 2.27 eV, and the PL intensities were also quenched with more Pd doping. The shifts in the conduction band and valence band were found to cause the reduction in the band gap energies of S−CeO2 and Pd−CeO2 NPs. In the case of photocatalytic degradation of methylene blue, photoelectrochemical, and photoantibacterial activities, Pd−CeO2 NPs showed enhanced activities under visible light irradiation. Therefore, Pd−CeO2 NPs have been shown to be a visible-light active material.

Funder

Universiti Brunei Darussalam, Brunei Darussalam

Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3