Mechanistic Insights into Photodegradation of Organic Dyes Using Heterostructure Photocatalysts

Author:

Chiu Yi-HsuanORCID,Chang Tso-Fu,Chen Chun-Yi,Sone Masato,Hsu Yung-JungORCID

Abstract

Due to its low cost, environmentally friendly process, and lack of secondary contamination, the photodegradation of dyes is regarded as a promising technology for industrial wastewater treatment. This technology demonstrates the light-enhanced generation of charge carriers and reactive radicals that non-selectively degrade various organic dyes into water, CO2, and other organic compounds via direct photodegradation or a sensitization-mediated degradation process. The overall efficiency of the photocatalysis system is closely dependent upon operational parameters that govern the adsorption and photodegradation of dye molecules, including the initial dye concentration, pH of the solution, temperature of the reaction medium, and light intensity. Additionally, the charge-carrier properties of the photocatalyst strongly affect the generation of reactive species in the heterogeneous photodegradation and thereby dictate the photodegradation efficiency. Herein, this comprehensive review discusses the pseudo kinetics and mechanisms of the photodegradation reactions. The operational factors affecting the photodegradation of either cationic or anionic dye molecules, as well as the charge-carrier properties of the photocatalyst, are also fully explored. By further analyzing past works to clarify key active species for photodegradation reactions and optimal conditions, this review provides helpful guidelines that can be applied to foster the development of efficient photodegradation systems.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3